Prova de ingresso escrita especifica para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, para alunos internacionais, Decreto-Lei n. 36/2014, de 10 de março

AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DE CURSO DE LICENCIATURA

NO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA PROVA MODELO DE MATEMÁTICA 2018

Leia com atenção:

Este exame tem duas partes.

O **Grupo A** (questões **1.** a **4.**) é constituída por perguntas de escolha múltipla. Como tal, cada resposta errada desconta 1/4 da cotação da mesma. Preencha, nesta folha, a sua identificação de forma legível e as respostas ao **Grupo A** na grelha que se encontra abaixo.

Grelhas rasuradas não são classificadas.

O **Grupo B** (questões **5.** a **7.**) é constituída por perguntas de desenvolvimento e a respetiva resolução é entregue em folhas devidamente identificadas.

Durante toda a prova, os telemóveis têm que permanecer desligados e guardados.

A não observância destas regras conduz à anulação da prova.

O exame tem a duração de 1h30

Nome:	ID:
Assinatura do aluno:	
Assinatura do professor:	

Grelha de respostas

Questão	1.	2.	3.	4.
Resposta				

Grupo A

[1.5] 1. Considere os seguintes vetores:

$$\vec{u} = (2, 1, -1)$$
 , $\vec{v} = (-1, -\frac{1}{2}, \frac{1}{2})$ e $\vec{w} = (1, -1, 1)$.

Qual das seguintes afirmações é verdadeira?

- (A) \vec{u} e \vec{v} são perpendiculares, \vec{u} e \vec{w} são colineares e $||\vec{w}|| = \sqrt{3}$.
- **(B)** \vec{u} e \vec{v} são colineares, \vec{u} e \vec{w} são perpendiculares e $||\vec{u}|| = \sqrt{6}$.
- (C) \vec{u} e \vec{v} são colineares, \vec{v} e \vec{w} são perpendiculares e $||\vec{w}|| = 3$.
- (D) \vec{u} e \vec{v} são perpendiculares, \vec{u} e \vec{w} são colineares e $||\vec{u}|| = 6$.

2. Numa experiência aleatória, os acontecimentos A e B são independentes. Se P(A) = 0.4[1.5] e $P(A \cap B) = 0.28$ então o valor de $P(A \cup B)$ é:

- **(A)** 0.82
- **(B)** 0.72
- (C) 0.7
- **(D)** 0.68

[1.5] 3. O $\lim_{x\to +\infty} 2x^5 e^{-x}$ é igual a

- (A) $-\infty$
- **(B)** 0
- **(C)** 2
- (D) $+\infty$.

[1.5] 4. A reta de equação y = x é tangente ao gráfico de uma certa função f, no ponto de abcissa 0. Qual das seguintes expressões pode definir a função f

- (A) $x^2 + x$
- **(B)** $x^2 + 2x$
- (C) $x^2 + 2x + 1$ (D) $x^2 + x + 1$.

Grupo B

- **5.** Um grupo de jovens, formado por 5 rapazes e 5 raparigas, vai dividir-se em duas [4.5] equipas de 5 elementos cada uma, para disputarem um jogo.
 - a) Supondo que a divisão é feita ao acaso, qual a probabilidade de as duas equipas ficarem constituídas por elementos todos do mesmo género?
 - b) O grupo tem dez camisolas numeradas de 1 a 10. Supondo que são distribuídas ao acaso, qual a probabilidade das raparigas ficarem todas com números pares?
 - c) No final do jogo, os dez alunos dispõem-se (ao acaso) em fila, para uma fotografia. Supondo que têm todos alturas diferentes, qual a probabilidade de ficarem ordenados por alturas?
- **6.** Considere a função f, de domínio \mathbb{R} , definida por $f(x) = e^x(x^2 + x)$. Recorrendo [5.5] exclusivamente a processos analíticos, resolva as alíneas seguintes.
 - a) Verifique que $f'(x) = e^x(x^2 + 3x + 1)$ e determine a equação da reta tangente a f no ponto de abcissa 0.
 - **b)** Estude f quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.
 - c) Determine, caso existam, as assíntotas de f.
- 7. Considere os números complexos

[3.0]

$$w = 1 + 2i$$
, $z = 1 + 3i$ e $t = -4 + 4i$.

- a) Escreva t na forma trigonométrica e esboce a representação gráfica de z e w.
- b) Calcule $(\frac{w-1}{2})^7 \times \frac{10}{z}$ na forma algébrica.

FIM.