

Prova escrita especialmente adequada destinada a avaliar a capacidade para a frequência do ensino superior dos maiores de 23 anos, Decreto-Lei n.º 64/2006, de 21 de março

Prova de ingresso escrita específica para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de especialização tecnológica,

Decreto-Lei n.º 113/2014, de 16 de julho

Prova de ingresso escrita específica para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de técnico superior profissional,

Decreto-Lei n.º 113/2014, de 16 de julho

AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DO CURSO DE LICENCIATURA EM

MATEMÁTICA APLICADA À TECNOLOGIA E À EMPRESA

DO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

PROVA MODELO

Duração da prova: 120 minutos

Nome:	
CC/BI/Passaporte N.º	Validade://

INSTRUÇÕES (leia com atenção, por favor)

- Os candidatos que tenham obtido aprovação em cursos preparatórios para o ingresso no ensino superior, organizados no âmbito de uma área departamental, poderão optar pela creditação das notas aí obtidas como sendo a classificação do conjunto das perguntas da prova relativas às matérias já avaliadas nesses cursos. Só se consideram os cursos que previamente tenham sido objeto de homologação pelo conselho técnico-científico.
- Indique em todas as folhas o número do seu CC, BI ou Passaporte. Coloque esse documento de identificação sobre a mesa para validação de identidade.
- As respostas devem ser efetuadas nos locais apropriados de resposta, nesta mesma prova, utilizando caneta preta ou azul
- As questões de desenvolvimento devem ser também respondidas nas folhas de prova. Se necessitar de mais folhas de resposta solicite-as aos professores vigilantes. Numere todas as folhas suplementares que utilizar.
- Não utilize corretor ou borracha para eliminar respostas erradas. Caso se engane, risque a resposta errada e volte a responder.
- Se responder a alguma questão fora do local apropriado de resposta, indique no local da resposta que esta foi efetuada em folha anexa.
- Para a realização desta prova será permitido o seguinte material de apoio: caneta, lápis e máquina de calcular.
- Durante a realização da prova os telemóveis e outros meios de comunicação <u>deverão estar desligados</u>. A utilização deste equipamento implica a anulação da prova.

ESTRUTURA DA PROVA

- **Grupo 1** Três questões de resposta múltipla de matemática.
- **Grupo 2** Um problema de matemática.
- Grupo 3 Sete questões de resposta múltipla de Matemática.
- Grupo 4 Dois problemas de Matemática.
- Grupo 5 Questão para desenvolvimento de assunto de cultura científica na área do curso.

C.C. / B.I. / Passaporte N.º

Grupo 1

(Cotação total: 3,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: -0,2 valores)

Para cada uma das questões indique <u>a resposta correta</u> do seguinte modo X.

Considere a função real de variável real $f(x) = e^x + x-1$.

1.	Α	equação	da reta	tangente	ao	gráfico	da	função	f	em x	<u> </u>	0	é:

- \Box (A) y=2x + 2
- \Box (B) $\frac{y+2}{2} = x$
- \square (C) $x-2=\frac{1}{2}(y-1)=2-z$
- \square (D) $(x, y) = (-1,4) + k(1,2), k \in \mathbb{R}$
- \square (E) y = 2x
- **2.** O valor do $\lim_{x\to 0} \frac{f(x)}{x}$ é:
 - \square (A) 1
 - \square (B) 0
 - \square (C) + ∞
 - \square (D) 2
 - \square (E) $-\infty$
- **3.** Quantos números naturais de três algarismos diferentes se podem escrever, não utilizando o algarismo 2 nem o algarismo 5?
 - □ (A) 256
 - □ (B) 278
 - □ (C) 286
 - □ (D) 294
 - □ (E) 336

C.C./B.I./Passaporte N.º

Grupo 2 (Cotação: 2,0 valores)

Resolva o problema proposto na folha de prova e indique claramente a resposta final do mesmo. Se o espaço para responder se mostrar insuficiente poderá usar o verso desta folha para continuar a resposta.

Considere a função $g(x) = \frac{e^{x^2+x}}{2x+1}$, definida em $\mathbb{R} \setminus \left\{-\frac{1}{2}\right\}$.

- a) Mostre que $g'(x) = \frac{((2x+1)^2 2)e^{x^2 + x}}{(2x+1)^2}$.
- b) Determine, caso existam, os zeros de g'.

Grupo 3

(Cotação total: 7,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: -0,2 valores)

Para cada uma das questões indique <u>a resposta correta</u> do seguinte modo \(\otimes\).

1. Se $\tan x = \sqrt{3}$ e $x \in \left]0, \frac{\pi}{2}\right[$ então:

$$\Box (A) \sin x = \sqrt{3} e \cos x = 1$$

$$\Box$$
 (B) $\sin x = \frac{\sqrt{3}}{2} e \cos x = \frac{1}{2}$

$$\Box$$
 (C) $\sin x = \frac{1}{2} e \cos x = \frac{\sqrt{3}}{2}$

$$\square (D) \sin x = \frac{\sqrt{3}}{3} e \cos x = \frac{1}{3}$$

$$\Box$$
 (E) $\sin x = -\frac{\sqrt{3}}{2} e \cos x = -\frac{1}{2}$

2. A reta definida por $\frac{x+1}{2} = \frac{2-y}{-4} = \frac{z}{2}$ é perpendicular ao plano:

$$\Box$$
 (A) $x + 2y + z = -1$

$$\Box$$
 (B) $x - 2y + z = 3$

$$\Box$$
 (C) $2x - 4y + 2z = -5$

$$\Box$$
 (D) $2x - 4y + z = 0$

$$\Box$$
 (E) $2x + 4y - z = 2$

3. Sabendo que $\overrightarrow{u} \cdot \overrightarrow{v} = -3\sqrt{3}$, $\|\overrightarrow{v}\| = 2$ e $\widehat{\overrightarrow{u}}, \overrightarrow{v} = \frac{5\pi}{6}$ então $\|\overrightarrow{u}\|$ é:

$$\Box$$
 (A) $3\sqrt{3}$

$$\Box$$
 (B) -3

C.C. / B.I. / Passaporte N.º

- **4.** Num curso superior existem dez disciplinas de índole literária, das quais três são de literatura contemporânea. Um estudante pretende inscrever-se em seis disciplinas desse curso. Quantas escolhas pode ele fazer se tiver de se inscrever em, pelo menos, duas disciplinas de literatura contemporânea?
 - \Box (A) ${}^{3}C_{2} + {}^{7}C_{4} \times {}^{7}C_{3}$
 - \square (B) ${}^{3}C_{2} + {}^{7}C_{4} + {}^{7}C_{3}$
 - \square (C) ${}^3C_2 \times {}^7C_4 \times {}^7C_3$
 - \square (D) ${}^{3}C_{2} \times {}^{7}C_{4} + {}^{7}C_{3}$
 - \Box (E) ${}^{3}C_{2} + {}^{7}C_{4}$
- **5.** Sejam A e B dois acontecimentos associados a uma certa experiência aleatória. Sabe-se que A e B são independentes, que P[A] = 0.2 e P[B] = 0.5. Qual é o valor da probabilidade condicionada P[A|B]?
 - \Box (A) 0,2
 - \Box (B) 0,3
 - \Box (C) 0,5
 - \Box (D) 0,7
 - \Box (E) 0,1
- **6.** Considerem-se as sucessões de termo geral $u_n = \frac{kn+1}{2n+3}$ e $v_n = \frac{2n-3}{n+5}$. Sabendo que $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n$, qual é o valor de k
- \square (A) 2
- □ (B) 1
- □ (C) 4

C.C. / B.I. / Passaporte N.º

7.	Seja f uma função tal que $f'(2) = -1$ e $f''(2) = 0$. Qual das seguintes afirmações é garantidamente verdadeira?
	(A) $f(2)$ é máximo da função f .
	(B) $f'(2)$ é máximo da função f' .
	(C) $f'(2)$ é mínimo da função f' .
	(D) A reta tangente ao gráfico de f' no ponto de abcissa 2 é vertical.
	(E) A reta tangente ao gráfico de f' no ponto de abcissa 2 é horizontal.

Candidatura n.º

C.C. / B.I. / Passaporte N.º

Grupo 4

(Cotação total: 4,0 valores; cotação parcial: 2,0 valores por questão.)

Resolva o problema proposto na folha de prova e indique claramente a resposta final do mesmo. Se o espaço para responder se mostrar insuficiente poderá usar o verso desta folha para continuar a resposta.

1. Num referencial o.n. $(0, \overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$, considere os pontos A(2,0,1), B(5,4,1), C(2,0,-4). Prove que o triângulo [ABC] é isósceles e retângulo.

C.C. / B.I. / Passaporte N.º

Resolva o problema proposto na folha de prova e indique claramente a resposta final do mesmo. Se o espaço para responder se mostrar insuficiente poderá usar o verso desta folha para continuar a resposta.

- 2. Uma empresa de reparações faz um teste aos candidatos a um emprego, para detetar as suas aptidões para a profissão. Passam no teste 60% dos candidatos. Dos que passam no teste, 80% concluem o treino com sucesso. Como experiência empregaram-se também candidatos que não passaram no teste. Deste grupo concluíram o treino com sucesso 50%.
- a) Qual é a probabilidade de um candidato escolhido ao acaso concluir o treino com sucesso?
- b) Verificou-se que um candidato escolhido ao acaso conclui o treino com sucesso. Qual é a probabilidade de ele ser oriundo do grupo que não passou no teste?
- c) Qual é a probabilidade de um candidato escolhido ao acaso não concluir o treino com sucesso e ter passado no teste?

Car		4		^

C.C. / B.I. / Passaporte N.º

Grupo 5 (Cotação: 4,0 valores)

Cada vez mais a Matemática se tem tornado uma "ferramenta" essencial no mundo empresarial.
Comente a afirmação.