Passar para o conteúdo principal
Délia Boino
Submetido por dboino a 24 March 2021
Objetivos

  1. Reconhecer os conceitos estudados como generalização das noções correspondentes em funções reais de variável real.
  2. Compreender os conceitos de limite, continuidade e diferenciabilidade de campos escalares e vetoriais e sua aplicação à determinação de direções de maior variação, aproximação de funções e ao cálculo de extremos.
  3. Calcular integrais, identificando a representação geométrica do domínio e reconhecendo quais as coordenadas a utilizar.
  4. Dominar a parametrização de linhas e superfícies e utilizá-la no cálculo de integrais.
  5. Conhecer as aplicações do cálculo vetorial integral, eg. comprimento de uma linha, área de uma superfície, volume de uma região, valor médio, trabalho, fluxo, centro de massa e momentos de inércia.
  6. Utilizar o raciocínio espacial na resolução de problemas reais.
  7. Formular matematicamente um problema, identificar e implementar estratégias adequadas à sua resolução analítica e computacional.

 

Ficha de Unidade Curricular